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Integer Squares with Constant Second Difference 

By Duncan A. Buell 

Abstract. The problem addressed is this: Do there exist nonconsecutive integers no, n1, n2,.... 
such that the second differences of the squares of the ni are constant? Specifically, can that 
constant be equal to 2? A complete characterization of sequences of length four can be given. 
The question of whether or not sequences of length five exist is still open but the existence or 
nonexistence of such sequences can be described in a more algorithmic way than the simple 
statement of the problem. 

1. Introduction. It is trivial to note that the second differences of the squares of 
consecutive integers is always equal to 2. Problem A addressed in this paper is this: 
Does there exist a sequence of five squares of nonconsecutive integers, n2, n 2, n2 

2, n2, such that the second differences are constant? Can this constant be 2? It 
turns out that we can sensibly break Problem A into two subproblems. Subproblem 
B is: Does there exist a sequence of four squares of nonconsecutive integers, n2, n , 
n2, n2, such that the second differences are constant (and equal to 2)? Subproblem 
C is: Does there exist a sequence of five integers, the first three and the last of which 
are squares, n 2, n2, n2 N2 n2, with n0, n , and n2 not consecutive, such that the 
second differences are constant (and equal to 2)? 

We have not been able to solve Problem A; the question of whether or not 
sequences of length five exist is still open. However, a complete characterization can 
be given both of the solutions of Subproblem B and of the solutions of Subproblem 
C, in the case where the constant second difference is 2. Our characterization of 
solutions to Subproblem B includes all sequences of four consecutive integers as 
well. 

Solutions of Subproblem B are not difficult to obtain by direct search; examples 
are (6, 23, 32, 39), (39, 70, 91, 108), (16, 87, 122, 149), (108, 157, 194, 225), (51, 148, 
203, 246), and (225, 296, 353, 402) [3]. Curiously enough, this is more than a problem 
in recreational mathematics; the late J. Richard Buchi observed that the nonex- 
istence of sequences of nonconsecutive integer squares of length n with second 
differences 2, for any n, could be used to show that there is no algorithm for 
deciding when systems of diophantine equations of the form 

N 

Eaijy bi, i = 1, ..., M, 
j=1 
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with integral a,,, bi, have integer solutions [4]. In addition, an unpublished paper of 
Hensley discusses this problem [3]. Similar problems have been considered by 
Barbeau [2] and by Allison [1]. 

2. A Characterization of Solutions. It is not difficult to see that we have a solution 
to Problem A, that is, integers n2, nj2, n2, n 2, n2, with second differences equal to 
2L if and only if, for some integer a, we have 

n2 = (no + a)2, 

n2 = (no + 2a)2 - 2(a2 - L), 

n2 = (no + 3a)2 - 6(a2 - L), 

n2 = (no + 4a)2 - 12(a2 - L). 

We note that a must be congruent to L modulo 2. The case a = 1 is seen to be 
the case of consecutive integers, and is generally excluded from consideration. 

Writing Eqs. (2.1) as differences of squares, letting u1, u2, v1, v2, w1, and w2 be 
integers such that U1U2 = 2, V1V2 = 6, w1w2 = 12, and letting A and B be integers 
such that AB = a2 - L, we see that it is necessary that we be able to rewrite the 
latter three equations as 

[no + 2a + n2][no + 2a - n2] = [uA][u2B], 

[no + 3a + n311no + 3a - n3] = [v1lA/k][v2kB/l], 

[no + 4a + nj[no + 4a - n4] = [wliA/j][w2jB/i], 

where k, 1, i, and j are nonzero integers, the bracketed right-hand expressions are 
integers, and the brackets indicate the symbolic factoring. It is clear that k and I can 
be chosen relatively prime, that i and j can be chosen relatively prime, and that 
each of these divides A or B and thus divides a2 L. 

We can now solve for the nm: 

u1A + u2B 
nto= - 2a, 2 

uIA + u2B 
t 

2 -a, u1A - u2 a 

(2.2) UIA-U2B 

vulA/k - v2kB/l 

n3= - 2 
wliA/j- w2jB/i 

n4= - 2 

We will also need 

(2.3) n + 3a = Vll2k + v2kB11 

These equations, together with the assumptions on the variables, are clearly 
necessary, and also sufficient, for the existence of integral squares with second 
differences 2 L. 
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Combining (2.2) and (2.3) and reducing, we obtain 

A(u1 - v11/k) + 2a + B(u2 - v2k/i) = 0. 

We note that u1 - v11/k = 0 leads to a finite number of possible (small) values a, 
which can be checked and shown to lead to no solutions to Subproblem B. We may 
thus assume that u1 - v11/k is not zero, multiply by A and then solve for A to 
obtain as a necessary condition for solutions to Problem A or Subproblem B that 

-a ? yaa2 -(ul - v11/k)(u2 - v2k/i)(a2 - L) 
(2.4) A = -v11/k 

To have rational values n m we must have a rational value for A, which requires that 
the radicand be a rational square. Since k and I are relatively prime and divide 
a2 - L, the radicand is actually an integer and so must be an integral square. If we 
denote this by t2 and rearrange terms, we have as a necessary and sufficient 
condition for the existence of solutions to Problem A or to Subproblem B that we 
have solutions, with the previously-mentioned conditions on the variables, to 

(2.5) L -(ku1 - v11)(u2 - v2k) = kit2 - a2{kl -(ku1 - v11)(1u2 - v2k)}. 

In the notation of binary quadratic forms, we are concerned with the representation 
of 

(2.6) L -(ku1 - v11)(u2 - v2k) 

by the binary quadratic form 

(kl, O, kl - (ku1 - v1)(1u2 - v2k)) 

of discriminant 

4 - k / ( kl -(ku1 - v11)(1u2 - v2k)). 

The above reduction applies to Subproblem B; a similar treatment shows that 
solutions to Subproblem C exist if and only if integers s and a exist so that the 
equation 

(2.7) L ju1 - Wi)(iU2 - W2j) = jis2 - a2{4ji -(ju - Wi)(iu2 - W2j)} 

holds, with the additional proviso that the derived values of A and B must be 
integral. 

3. The Solutions to Subproblem B, for L = 1. In the special case L = 1, we know 
that one representation (2.5) exists, with t2 = a2 = 1 (this is the solution that yields 
consecutive integers). Thus, it is not the existence but merely the number of 
representations and the requirement that A and B be integral which are in question. 

Considering symmetry and coupled sign changes,'we may reduce (2.5) to the case 

u1 = 1 and u2 = 2, with v1 and v2 both positive. 
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Now consider the case v1 = 1, v2 = 6. We have, for Subproblem B, 

(3.1) no =A/2 + B-2a, 

(3.2) n1 = A/2 + B-a, 

(3.3) n2 =A/2 -B, 

(3.4) l IA 3kB 

(354) -k(a - t) - l(a + t) 1 (-kl)(t 2- a2) 2 
(3.5) A 

I - k B= 2( - 3k)' 2(l -k)(l - 3k) 
+ a 

We note that the choice of factorings for A and B follows from the convention of 
(2.4). Elementary but tedious analysis and the requirement that A and B be integral 
allow us to conclude that a and t are odd, that A is even, and (a - t)/(l - k) and 
(a + t)/(l - 3k) are even integers. Working further, it can also be seen that k and I 
must be of opposite parity. A tedious but direct examination of all the other cases 
for v1 and v2 then shows that each reduces to this one. We have the following 
theorem. 

THEOREM. There exist nonconsecutive integers no, n1, n2, n3, whose squares have 
second differences n 2 - 2n 2+ n 2 = n 2 - 2n 2 + no = 2 if and only if no, n1, n2, and 
n3 are given by 

n = xk - yl - 2a = x(- 21 + 3k) + y( - 31 + 6k), 
(3.6) n1 = xk - yl - a = x(-/ + 2k) +y(-21 + 3k), 

n2= xk + yl, 

n3 = xl + 3yk, 

where k, 1, x, and y are integers, k and I are relatively prime and of opposite parity 
such that 

(3.7) 1 = x2(I - k)2 + xy(212 - 6kl + 6k2) + y2(l - 3k)2. 

At issue in the solution of Subproblem B is thus whether the binary quadratic 
form 

(3.8) ((I - k) 2, 212 - 6kl + 6k2 (I - 3k )2) 

of discriminant 

D = 4 k 1 (l - 2k) .(21 - 3k) 

represents 1, that is, is equivalent to the principal form of discriminant D. The form 
(3.8) is equivalent to the forms 

(3.9) (4k2 - 2kl, +4k2 - 2kl, (1 - k)2) 

and 

(3.10) (412 - 6kl 412 - 6kl, (I- k )2) 

both of which are ambiguous. Since the product (2kl + 4k2)(6kl - 412) is the 
discriminant, exactly one of the two lead coefficients is smaller in magnitude than 
the square root of ID 1. 
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It can be seen that for negative discriminants we have a representation of 1 if and 
only if (1 - k)2 = 1, and thus that all of the cases of negative discriminant are 
degenerate, providing only sequences of four consecutive integers. 

If D is positive, though, exactly one of 

(4k2 - 2k1, K(4k2 - 2k1), *) 

and 

(412 - 6k1, K(412 - 6kl), *) 

is a reduced ambiguous form, for some suitable K and the third coefficient chosen to 
fit. We can actually be more specific. It is always true that 

-4k2 + 2k1 < 412 - 6kO. 
Both expressions above, however, must be of like sign for the case of positive 
discriminant, since the product is the discriminant. Therefore, of the two forms listed 
above, that form is reduced which has a negative lead coefficient. 

Remarks. 1. A form represents 1 if and only if it is equivalent to the principal 
form. There are, however, in any ambiguous cycle exactly two ambiguous forms. 
Thus, if the reduced form above is equivalent to the principal form, it must be the 
other ambiguous form (besides the principal form) in the principal cycle. Among 
other things, this implies that the form (-1, *, **) is not in the principal cycle, that 
the negative Pellian equation X2 - DY2 = -1 or -4 is not solvable, and that the 
principal cycle has length equal to twice an odd number (since the signs of leading 
coefficients alternate in sign). 

2. The existence of solutions to Subproblem B reduces to the known difficult 
problem of determining whether or not an indefinite binary quadratic form is 
equivalent to the principal form. The actual solutions, once existence is assured, 
come from the recurrence relationships which are Lucas sequences obtained from the 
coefficients in the fundamental solutions of X2 - DY2 = 4. 

4. The Solutions to Subproblem C and to Problem A, for L = 1. The different 
possible cases of Subproblem B all reduce to the same case, as evidenced by the 
above theorem. This is not true of Subproblem C; we obtain seven similar but 
distinct possible cases, of which one is this: 

Solutions for Subproblem C exist if we have integers p, q, i, and j such that 

4 = p2(i _j)2 + pq(16y + 4(i - j)(i - 6j)) + 4q2(i - 6j)2 

with i and j both odd, i relatively prime to 3, and 

no =pj - 2qi - 2a, 

n1 = pj - 2qi - a, 

n2 =pj + 2qi, 

n4 = pi + 12qi. 

In this case, we have A = 2pj,B = 2qi, and a2 = 1 - 4pqij. In order to solve 
Problem A, the A and B values must match, up to exchange and signs, from 
Subproblem B to Subproblem C. That is, we must have (xk, yl) = ? (pj,2 qi) or 
? (2qi, pj). It would seem improbable, then, that solutions to Problem A exist. Not 
only must both representations (2.5) and (2.7) exist, but the value of a in both 
representations must be the same. 
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5. Computations and Examples. We have computed all discriminants D = 4- k 
1(1 - 2k)(21 - 3k) with 1 < k, I < 1000, produced the relevant ambiguous forms, 
and determined whether or not the forms represent 1. It is easy to show that these 
limits provide for a complete list of the relevant positive discriminants less than 
1341348008. There are only 5816 such discriminants, 42 of which appear twice. (For 
example, 14560 appears with (k, 1) equal to (4,13) and to (7,4).) Of these 5858 
instances, 2668 of the forms represent 1, and 3190 do not. Since in most instances, 
the actual sequences of n m are rather large, we have not computed these. 

In computing the discriminants and determining representability, it is clear that 
the cases I - k = + 1 and I - 3k = + 1 are special, as we can trivially guarantee the 
existence of representations. It is easy to show that only I - k = -1 need be 
considered, and then that the solutions and sequences can be explicitly given by 
recurrences. Using the standard theory of representation by forms, or equivalently of 
Lucas sequences, one can show that the following are true. 

Example 1. If I - k = - 1, then D = 4A = 4(k - 1)(k)(k + 1)(k + 2)= 

4(k4 + 2k 3 - k 2 - 2k). The representation (3.7) is 

1 = x2 ?(2k2 + 2k + 2)xy +(2k + 1)2y2 

which is equivalent to the representation 

1 = (x + 3y)2 +(2k2 + 2k - 4)(x + 3y)y +(-2k2 - 2k + 4)y2 

by the principal reduced form (1,2k2 + 2k - 4, -2k2 - 2k + 4) of discriminant 
D. The negative Pell equation X2 - Dy2 = -4 is not solvable, and all solutions of 
X2 - Dy2 = 4 are 

X + YVIi = 2T + UV- n 

2 2 ' 

or the conjugates, for positive or negative exponents n, with T = k2 + k - 1 and 
U = 1. Up to sign, all values of x , y1, a , n 01, n 1n, n2 n3 i, involved in or derived 
from the representation (3.7) are obtained from 

xO = -1 x =x-2k2 _2k 

Yo =0 Y1 =1 

a0 = 1 a1 = 2k2- 1 ai=2- xi -(2k + 1)y 

n = -k - 2 no1 = -2k3 - 6k2 - k + 3 no' = (k + 2)xi +(3k + 3)y1 

n10= -k - I n1 = -2k3 - 4k2-k+ 2 n1 = (k1+ )x? +(k+ 2)y 

2,0 = - k nn21 = -2k3 - 2k2 + k - 1 n21 = kxi +(k - 1)y 
n30= -k+1 n31= -2k3+5k n31=(k - 1)x1+3ky1 

with each of these satisfying the recurrence a1w,+2 = 2Ta1+1 - ai for i > 0. 
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We present in Tables 1 and 2 examples of this case. 

TABLE 1. (1, k, T. A) = (1,2,5,24) 

x Y a nO n1 n2 n3 

-1 0 1 -4 -3 -2 -1 

-12 1 7 -39 -32 -23 -6 

-119 10 69 - 386 - 317 - 228 - 59 

-1178 99 683 - 3821 - 3138 - 2257 - 584 
- 11661 980 6761 -37824 - 31063 -22342 -5781 

-115432 9701 66927 - 374419 - 307492 -221163 -57226 

TABLE 2. (1, k, T, A) = (2,3,11,120) 

x Y a nO n1 n2 n3 

-1 0 1 -5 -4 -3 -2 

-24 1 17 -108 - 91 -70 - 39 
- 527 22 373 - 2371 -1998 - 1537 - 856 

-11570 483 8189 - 52054 -43865 - 33744 -18793 
- 254013 10604 179785 -1142817 - 963032 - 740831 -412590 

- 5576716 232805 3947081 - 25089920 - 21142839 - 16264538 - 9058187 

Example 2. If l - 3k = - = ? 1, then 

D = 4A = 4(9k4 + 188k3 + Ilk2 + 2ek); 

the negative Pell equation X2 - Dy2 = -4 is not solvable; the fundamental values 

of T and U are 9k2 + 9ek + I and 3, respectively; up to sign, all values of xi, yi, ai, 

nO i, nj i, n2ji n3j, involved in or derived from the representation (3.7) are obtained 

from 

x0=0 x1=3 

Yo 1 Y1 = -2 

ao= E a = 6k + ai = (2k + -)xi + -yi 

n 0 = -3k - 3 no, = -3k no0i = (-3k - 2E)xi +(-3k -3e)y 

n10 = -3k - 28 n1,1 = 3k + 8 nl, = (-k - -)xi +(-3k - 28)y1 

n20 = 3k + 8 n21 = -3k -28 n2, - kxi +(3k + e)y, 

n -3k n3,1 = 3k + 38 n3,1 = (3k + 8)xi + 3ky1 

with each of these satisfying the recurrence ai+2 = 2Tai+l - ai for i> 0. We note 

that for + 1 we have 

n2 = -2(3k + 1)3 + 5(3k + 1), 

nl,2 = 2(3k + 1)3 + 2(3k + 1)2 -(3k + 1) + 1, 

n22 = -2(3k + 1)3 - 4(3k + 1)2 -(3k + 1) + 2, 

n3=2 = 2(3k + 1)3 + 6(3k + 1)2 +(3k + 1) - 3, 
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and for= -1 we have 

nO2 = -2(3k- 2)3 - 6(3k - 2)2-(3k - 2) + 3, 

n1,2= 2(3k - 2)3 + 4(3k - 2)2 +(3k - 2) - 2, 

n22= -2(3k - 2)3 - 2(3k - 2)2 +(3k - 2) - 1, 

n3,2= 2(3k - 2)3 - 5(3k - 2), 

so that these examples have already appeared in Special Case 1. We present in 
Tables 3 and 4 examples of this case. 

TABLE 3a. (1, k, T, A, E) = (5,2,19,40, -1) 

x Y a no n1 n2 n3 

0 1 -1 -3 -4 5 6 
3 -2 11 -6 5 -4 3 

114 -77 419 -225 194 -157 108 
4329 -2924 15911 - 8544 7367 -5962 4101 

164388 -111035 604199 -324447 279752 -226399 155730 

TABLE 3b.(/,k,T, A, E) = (7,2,55,336,1) 

x Y a no n1 n2 n3 

0 1 1 -9 -8 7 6 
3 -2 13 -6 7 -8 9 

330 - 221 1429 - 651 778 - 887 984 
36297 - 24308 157177 - 71604 85573 - 97562 108231 

TABLE 4a. (1, k, T, ) = (11, 4,109,1320, -1) 

x Y a no n1 n2 n3 

0 1 -1 -9 -10 11 12 
3 -2 23 -12 11 -10 9 

654 -437 5015 - 2607 2408 - 2191 1950 
142569 -95264 1093247 -568314 524933 -477628 425091 

TABLE 4b. (1, k, T. A, E) = (13,4,181,3640,1) 

x Y a no n1 n2 n3 

0 1 1 -15 -14 13 12 
3 -2 25 -12 13 -14 15 

1086 - 725 9049 -4329 4720 - 5081 5418 
393129 - 262448 3275713 -1567086 1708627 -1839308 1961301 
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Example 3. The careful reader will probably notice that some of the sequences 
from the introduction, (6, 23, 32, 39), (39, 70, 91, 108), (108, 157, 194, 225), 
(225,296,353,402), appear in our tables, and that these have the rather curious 
feature that the last member of the previous sequence is the first member of the next. 
Indeed, if l - k = - 1, as in Special Case 1 above, it is easy to see that as functions 
of k, no0l(k) = n3,1(k + 1), and the rest of the relations follow. 

Example 4. The next simplest case after those of Examples 1 and 2 is the case 
(1 - k)2 = 9. We can choose / - k = -3, and the representation problem (3.7) is to 
find x and y such that 

1 = 9x2 ? (2k2 + 6k + 18)xy + (2k + 3)2y2 

= 9(x + 3y)2 +(2k2 + 6k - 36)(x + 3y)y +(-2k2 - 6k + 36)y2. 

For the case / = 1, k = 4 we present in Table 5 the first few solutions. In this case, 
D = 1320 and the fundamental solution of T2 - 280U2 = 1 has T = 251 and 
U = 15. The previous recurrences an+2 = 2Tan+l - an again hold for all seven 
variables. 

TABLE 5 

x Y a no nj n2 n3 

6 -1 -7 39 32 23 -6 
3021 -506 -3497 19584 16087 11578 - 3051 

1516536 -254011 -1755487 9831129 8075642 5812133 -1531596 

6. A Final Remark. We have not been able to determine a way to obtain distinct 
sequences as solutions to Subproblem B. We make, however, the following observa- 
tion. The polynomial in the representation of (3.7), 

(1- k)2x2 +(22 - 6kl + 6k2)xy +(1 - 3k)2y, 

is identical to the polynomial 

(x + y)212 +(-2x2 - 6xy - 6y2)lk +(x + 3y)2k2, 

and the values of a and the ni are unchanged (up to sign) by the exchange of I 
for x and k for -y. Considering this as a binary quadratic form in variables x 
and y with coefficients that are functions of l and k, we have discriminant D = 
4kl(l - 2k)(21 - 3k). Exchanging the roles of coefficients and variables, we have 
discriminant D' = -4xy(x + 2y)(2x + 3y). We note that (212 - 6kl + 6k2) is 

always positive, so that x and y are of opposite sign and both discriminants are 
positive. In enumerating solutions to Subproblem B, we need only consider the 
smaller discriminant, which forces, among other things, the values of the variables x 
and y to be not both larger in magnitude than the square root of D. Since the values 
of x and y become too large after only one iteration of the Lucas recurrence, we see 
that only the fundamental representation of (3.7) can produce distinct sequences. 
Among other things, this implies that all the sequences in Tables 1 through 4 can be 
discarded, as they will appear as fundamental solutions later in an enumeration. 
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